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ABSTRACT 

A detai led experimental investigation of the structure of weak turbulence 

generated by various single-and multiple-stage grids has been macle. T h e  weak 

turbulent fields were limited to those having no interaction with the mean flow 

Yield. ;I-: present study covers a range of Reynolds numbers of turbulence between 

70 and 7. Components of turbulence were found t o  have equipartition of energy 

in the final stage of decay.  When the Reynolds number of turbulence is < 30, 

the kinetic energy of turbulence decreases inversely a s  the square of decay  t i m e ,  
_ _  . . .  

All the length scales of turbulence increase as  the square root of time, while the 

Reynolds number of turbulence decreases as the square root of t i m e .  Both the 
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not in agreement with those predicf-ed by the normal  statistics of turbulence. The 

longitudinal correlation function i s  closer t o  u Cauchy's distribution than a Gaussian 

distribution function The resultant three-dimensional energy spectrum show continuous 

transfer of energy from the low to high wave numbers through out the f ina l  stage of 

decay.  The measured time-correlation functions up to the fourth order indicate 

. tho6 the grid-generated turbulence is not completely consistent with normal statistics. 

Al l  experimental evidences imply that in the f ina l  stage of decay the wave components 

of i-urbuience are not completely independent with unlimited degrees of freedom but 

are  closely related to  the kinetic model of a field consisting of a specific Vpe of line 

vortices which are aged and essentially non-interacting. 

.- - .  
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1 .O INTRODUCTION 

in almost forty years of research in turbulence, the classical problem of 
c- 

how a weak turbulent field decays with time is still a n  unsettled question. The 

traditional statistical treatment of turbulence i s  t o  derive from the Navier-Stokes 

equations the correlation equations for fluctuating velocit ies a t  two and three points 

in the flow field The second-order correlation equations contain the third-order 

correlations. Equations for the third-order correlations can be obtaine.d, but these 

involve the fourth-order correlations, and so on ,  In a weak turbulent field, i,e. , 
- . . - - _I 

in a final period of decay,  the third-order correlations a r e  usually assumed 

nsgliyible,  and then the second-order correlai-ions become l inear  differential 

a r e  Fourier transformations of the second-order corre lations, a r e  introduced t o  provide 

the basis for ideas about the energy distribution among different wave numbers. Solutions 

of the energy spectrum tensor for the weak turbulent field can be expressed by the 

product of a n  exponential time-decay function with a n  unspecified initial spectrum 

- *  
P, 

1 tensor. Early theoretical investigations of this subject were made by Taylor , 
Mi I lionshtchikov*, i<cirm6n-Howarth3, Loitsiansky4, and Lin 5 . Upon assuming the 

6 Loi tsiansky invariant, Batcheisr found that the energy of a homogeneous and isotropic 

turbulence decays a s  (t-to) -5/2 in the final period, where t is the time, and to is 

a virtual time. The Loitsiansky invariant was used to postulate the unspecified initial 

spectrum tensor. Retaining the hypfhesfs  of homogeneity, Ratchelor and Chandrasekhar 7 

extended fhe analysis for anisotropic turbulence. They again arrived a t  the same 
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power law to the -5/2 for the final period of energy decay. inhomogeneous turbulence 

8 was further analyzed by Deissler . When the energy spectrum tensor near the origin 

of wave-number space is taken to be the same as that assumed by Batchelor for 

homogeneous turbulence, all components of wave energy are found to decay as the 

power law to -5/2. 

9 However, Philips and recently Saffmanl’ found that the energy i n  the 

final period decays as (t-to)-3/2, i f  the net linear momentum of the fluid is not 

zero. Birkhoff 1 1  pointed out that a decay law between -3/2 and -5/2 power i n  

the final period had theoretical possibility compatible with the Navier-Stdkes and 

continuity equations. Recently Lee a n d  Tan’’, indicuted that the initial spectrum 

tensors, which ultimately Izd to decay laws to the -5/2 and -2 powers i n  the 

T I ~ C I I  perioa o r  a n  tnnornogeneous ~ ~ ~ ~ u i e r i ~ t : ,  w e i e  u LICISS UI U U I I I I ~ S I U I C  ICIISUIS 

satisfying the conservation of mass and the symmetrical condition of the spectrum 

tensor e 

. .  . .  

Although the statistical theory for the weak turbulent field attracted so 

much attention, on ly  a few experimentai investigations appear in the literature. 

Validity of the statistical theory for turbulence i n  the f ina l  period has not been 

verified i n  detail, The experimental evidence rnade by Batchelor cind Townsend 

to confirm the energy decay law of the -5/2 power was considered by Birktioff’l to 

be inconclusive 

be necessary to clarify the  analytical predictions. The experimental result of Tan 

and shows that the energy of turbulence decays as  tm2 within a substcrniial 

13 

Further experimental study on weak decaying turbulence seems to 
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range of final decay time. W kinetic model, based on aged and noninteracting 

line vortices, was proposed to explain this observation; however, no speckurn 

measurement was made a t  that time. Deissler” suggested that spectrum measuremeni- 

in the final period would be necessary for positive identification of th- structure 

of weak turbulence. Hence, under his encouragement and support, a n  intensive 

restudy of the structure of a weak turbulent field was undertaken. An improved 

testing facil i ty WQS built with the specific objective of extending the decay  time 

as long a s  possible so a s  to obtain a more  accurate  indication of the decay law. 

The specific turbulent field studied i n  this paper can be classified a s  one 

of: law Reynolds number of turbulence (< 100) with physical eddies of limited range 

i l l  >ILC UIIU errclyy. I UIII1CIIIlVlC., IllL.rlb ”UUl”4 \”” l l ” .  I . _ . ”  ..” .-.--..-.. * ..... ...- . I .  I . I  . .  * - .  * , I  , I . -  - .  

mean flow field. To generate such a flow field, several methods were considered. 

1 .  Generation of turbulence by placing a grid in a uniform steady 

flow field, 

2. Generation of turbulence by a grid moving at uniform speed through 

a n  init ially quiescent body of fluid, and 

3 .  Generation of uniform turbulence throughout the volume of an 

init ially quiescent large body of fluid by dropping a grid quIclcly 

through the body of fluid; 

The  third method of generating turbulence i s  considered to be most ideal i n  that  the 

energy gradient of furtnulence wi!l be minimum througho~st the voiwme of fluid. 

However, it has the same common defect  associated with the second method because 
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it is difficult to avoid small secondary fluid motions caused by nonuniform temp, nratures 

existing in a large body of stagnant fluid. Furthermore, i f  one employs the hot wire 

or hot f i lm techniques to obtain statistical data for the turbulent field, one would 

be required to tow the sensor mechanically through the body of fluid at a high degree 

of uniform speed. This was found to be very difficult  to achieve, considering the 

present state of the art as well as the need to maintain a reasonable cost, Most 

of all, the length of each statisticul record that could be obtained from these methods 

i s  critically limited by the size of any testing facilities. The overall characteristic ' 

-___ - . - - - 

of the first method was found to be the best of all three i n  that uniform temperature 

could be maintained through the continuous recirculating and mixing processes 

employed i n  the system. Due to the great Inertia ot a tlowing body ot t luid,  nois?, 

vibration, and unsteady flow can be reduced to a desirable l imi t .  In addition, the 

sensor can remain stationary with respect to the laborafory frame, thus eliminating 

a n  important source of noise. Above all, unlimited amounts of statistical data 

could be obtained i n  such a system. Therefore, this methcd was adopted to generate 

all turbulences studied i n  this report. 

Detailed techniques for the experimenta I setup, mecrsurements, data reductions, 

and ana!yticuI resufts are described in  the foollawing sections. ingeneral , the 

turbulence i n  i t s  finul stage of decay was found to huve a distinctive self-preserving 

velocity structure. The wave components of such a field do not show any teridency 

to decay independently, even a t  very low Reynolds number of turbulence. The 

measured energy transfer function indicates continuous trcsnsfer of energy from the low 
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to high wave numbers throughout the final stage of  decay.  This was found to be the 

key experimental fact  which is contrary to the present theory of weak turbulence, 

in which the transfer of energy other than the self diffusion of waves i s  taken 

to be zero in the l i m i t ,  A maximum energy decay rate  propr t iona l  to the inverse 

square of decay  t i m e  was consistently observed for a weak turbulent field that 

did not interact with the mean flow field. For turbulence which interacts with the 

mean flow field, the decay  rate  is always less than the inverse-square law. All 

attempts to create  turbulent fields that would decay  faster than the inverse-square 

law a s  well a s  the predicfed -5/2 power law have not been successful. IU is now 

doubtful whether such a field coutd he creafed o r  exist within tire physical l imits  

r .  . .-. ....-. -". 0 

. 
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2.0 EXPERiMENTAL SETUP AND PROCEDURE 

2.1 Water Channe I 

A water channel instead o f  a wind tunnel was selected for the present 

study because the kinematic viscosity of  water is approximately 16 times less 

than that of  air. Hence, for modeling a given Reynolds number, either based on 

the mesh length of the turbulence generating grid or the dissipation length of  the 

grid generated turbulence, the mean velocity required for water i s  only one-sjxteenth 

that o f  air. Also there w i l l  be a corresponding increase i n  t ime scale for water as 

against air, The required Reynolds numbers, based on the mesh Iecgth and the 

dissipation length, are of the order of <?006 and < 900, respectively, for the 

present study. The 16 times reduction in mearr velocity tor water wauid n ~ t  only 

keep the boundary layer of the channel laminar to reduce the interaction with the 

turbulent field, but also the corresponding increase i n  the time scale would enhance 

the accuracy o f  measurements for the decay rate of  turbulence. The lengthened time 

scale also permits one to obtain a direct visual observation o f  the sturcture of 

turbulence using the dye-streak technique. 

A special wafer channel 0.6 meter in width by 0.6 meter in depth and 

1 1  - 0  meters iti length was constructed of double toyers of 1.9-crn marine plyv~load, 

as shown in Fig. 1. The walls of  the channel were bui l t  to within 0.16 cm of the true 

straight line by carefully overlapping the joints o f  the plywood panels. For a 

designed flow speed of less than 5 crn/sec, no measurable slope was necessary for the 
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bottom of the channel.  The channel bottom was built to within 0.16 c m  of the 
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true level. The inside surface of the channef was lined wiih murine fiber-glass 

plastic and  a smooth overcoat of paint. Two plastic pipes 10.2 cn? in I,D. were 

used for recirculating the flow from one end of the channel to the other. At the 

outlet  end of the channel,  a 26.7-cm diameter low-velocity propeller pump was 

used for recirculafing the fluid. The pump was driven by M special motor-generator 

set made by EIectro-Craft Corporation. By means of feedback contro!, the motor 
- ._.___ 

speed was regulated against the output signal from the generator. A regulation 

within 0,02 percent of the  set speed for all external variation of line voltages and 

changes in load was achieved.  

uniform flow in the test section. Uniform flow in the channel was accomplished 

by using multiple sections of  honeycomb and  fine mesh screens. Since head loss 

through the screen was negligible,  multiple layers of 12.6-mesh/cm screens were 

used to damp out all physical eddies larger than 0.1 c m .  Small eddies of low energy 

level decayed very quickly within 10 c m  from the last screen. To prevent clotting 

of the f ine screens, water i n  the channel was filtered continuously by a swimming 

pool filter system to keep  the water free of lint and bacterial  growth. Conditions 

for uniform and steady flow in the channel were found to  depend crit ically on the 

absolute uniformity of the damping screens; hence they were carefully cleaned at 

the beginning of each experiment. A bhffle plate was installed at  the outlet  end 

of the channel.  It was set a t  such a level that the water ftowing aver  i t  would reach 
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the crit icai  velocity shown in Fig. 1. Under this condition no waves downsfream of 

the plate could propagate upstream; most of all, the backwater effect  causing 

nbnuniform ftow in the channel was eliminated. The zone of stagnont flow f ie ld 

* 
i n  front of the baffle plate was found to be less than half the width of the channel 

and it did not notably shorten the usable length of the test channei. Additional 

wave traps were installed u t  the inlet end to efiminate surface waves. TQ reduce 

external noises, the channel was set  on a solid concrete floor far away from all 

sources of vi bra tions. 

The low ambient noise of the test channel had been demonstrated by the 

facf that  capillary dye streaks initiated a t  the inlet  end of the channel remained 

. . I . .  . I  . a . t n - -1. -- c.---I. - “ - I  -.,-.- LE-, : . . . I -& ...-, I I r . . r ~ m r r r r  
.#’.u,y”’ .Y ...- ”_...”.. -..-. - , - -. . - ,- - . . . . - - 

diffused iaminarly to upproximately 2.0 cm from the wall a t  the outflow end., This 

indicated that the channel boundary layers were laminar throughout the channel 

when no turbulence-generating grid was introduced into the channel.  Wi th  the 

introduction of turbulence generating grid used in this report, the dye drops introduced 

a t  the channel boundary near the grid were faund to  diffuse laterally about 5 c m  

from the wall 1 meter downstream from the grid. This was due mainly to the turbulence 

created by the grid. At the downstream end of the channel the lateral diffusion was 

limited to 8 cm because the boundary layer tended io remuin laminar, and the grid 

turbulence decayed.  Thus, the maior protion of the channel core w s  free from either 

the disturbance generated from the channel walls or f r m  the cutoff effect by the 

walls on the grid turbuience, These features were key reasons for using a wcteer 

channel in preference to the wind t u n n e l  .For.tk‘fs study. 
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2.2 Biplane Grids 

The  mesh size of the turbulence-generating grid to  be used was limited by 

the finite size of the water channel.  The physical size of the turbulent 

created by the grid should be small with respect to  the width of the channel in 

order to  avoid interaction of such eddies with the mean flow field. However, 

the mesh size should not be too small. The grid shoiifd b e  of a size that will 

produce turbulence of sufficient Reynolds number and energy that could still be 

detected a t  the outflow end of the channel,  Three sizes of biplane square grids 

meeting the previously described requirements were used in this study. Two grids 

have the same mesh-to-rod ratio of M/d = 2.8, one  with M = 3.55 c m  and the 

other with 

M = 3.18 c m .  Henceforth, these grids will be designated as Grids A, B and C,  

eddies 

= 1.78 cm. The third is an open-type grid with M/d = 5 , O  and 

respectively. A detailed survey of the intensity of turbulence and grid wake was 

made immediately behind each of the three grids. In general ,  the grid wake can be 

detected a t  a distance of x/M = 5 behind the grid. Beyond x/M = 5, the wake 

becomes unstable 

becornes homogeneous in a plane normal to  the mean flow. Measurements were taken 

to check the planar homogeneity of the generated turbulence a t  x 2 35h4 from 

Grids A and 0, and a t  x 2 10M from Grid C.  

of turbulence were constant within 2 percent i n  the cross-flow planes. The  energy 

components of turbulence were measured by varying the angle between the hot f i l m  

sensor and  the m e a n  flow direction; see Section 2.3. The ratio of the energy of 

Farther downstream the wake i s  undetectable,  and the turbulence 

It was found that the measured intensities 



turbulence in the flow direction, u2 , and the cross-flow direction, v2 , is 

shown in Fig, 2. The equipurtition of the energy components of turbulence 

indicates that  the turbulence in the present study has met a necessary condition 

s" 
. .  

' ~ .- 
. -  

, i. .. . .. I ... 

. *  

of plane isotropy (within 5 percent) I Phis result is different from the measurements 

oi B 6 -iorted the turbulence to be anisotropic 

(u2/v2 = 1.5) in the final period of decay  after being apparently isotropic i n  the 

ini t ia I period. 
. - .  - 

2.3 Velocity Probe 

Perfect low-frequency response and  linear-output characteristics of a 

, ,-; -. , :<?$~--.=i.,P.i... 

!4neafitzeci, c-&rs;unt-temperature hoi-fi fm anemometer systernI7 was used to 

measure the fluctuating velocities. The basic sensor was a 30-degree, hot-film 

wedge, 0.15 mm i n  chord and 1 .O mm in span. The probe was mounted on brass 

tubing 2,5 mm in diameter by 10 c m  i n  length, Both the velocity and the directional 

response of the probe were carefully calibrated; see Fig. 3. For- the condition i n  

which the fluctuating signal voltage e(t) and the turbulence velocity u(t) a r e  

linearly related,  ;.e., e(t) = Bu(t), the  output signal from the sensor, whose 
,.$ $ ,*: 
i <' 

plane of symmetry (bisecting plane of wedge) is para1 le1 to the. u and v c o m p n e n t  

of the velocities, can be expressed by the  following equation: 

e ( t )  = p { u ( t ) c o s , G  + v ( t ) s i n $  } -t- Q w ( t )  



A 

where$ i s  the angle between the mean velocity component U and the normal to 

the long axis o f  the hot film; u(t) is the fluctuating velocity along U; v(t) and 

w(t> are the cross velocity componenfs normal to U; and 8 and 0 are the 

calibration constants. Both the constants B and R and the directional sensitivity 

were obtained and verified by oscillating the probe sinusoidally i n  a mean flow 

field. The probe was oscillated mechanically in three different modes at  a fixed 

amplitude o f  1.27 cm for different oscillating frequencies. In mode 1 , the plane 

of symmetry o f  the sensor was placed in the plane o f  IJ and v components, with 

j3’ = 0 degree. The probe was oscillated along the direction o f  mean flow. In 

mode 2, the f i lm  was set at = 45 degrees and was also oscillated along the 

-I...- - L ’ - . -  - 2  J.L- ---..- FI,.. . I ,  -,,?, 2 4.L- camcqv d.nrC tn a = 0 &c,rpp -..--..-..--...A_ - .. _. - - 

and was oscillated i n  the direction of  the w component. Typical calibration 

curves for the three modes are shown i n  Fig. 3. The slope o f  the calibration curve for 

mode 9 gives the constant 0, while the slope o f  mode 3 gives the constant Q . The 

curve for mode 2 verifies the cosine response characteristics. The value of Q/f3 

was found to be 0.09, which is negligible as far as the contribution o f  w2 to the 

measured quantities o f  v2 and v2 i s  concerned. When the plane o f  symmetry of the 

probe is i n  the u and v plane, one notes that the relationship of e(t) and u(t) 

i s  perfectly linear for both 

These ideal operating characteristics were built specifically into the anemometer 

system for this work. The cosine direction sensitivity (Eq, 2.1) was found to break 

down for ,@ > 55 degrees. Hence, Eq. 2.1 is valid for a l l  rurbvlend. fields studied, 

= 0 and 45 degrees throughout &e range of measurement. 
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except  a t  locations very close to the  grid where the instantaneous value of JJ 

c 

. 

could exceed the previously described l i m i t .  

Let e l  and e2 be the root-mean-square (rms} outputs of the anemometer 

set  a t  9 = 0 degree and JJ = 45 degrees, respectively; then 

2 
e l  

- 
(2 * 2) 

2 u -  
p- 

2 
_. 

V 2 2e; - e1 

Phis relationship was used t o  obtain the ratio of energy components shown in Fig. 2. 

Here we take VV = 0, since there was no mean velocity gradient i n  the field. ' . 

2.4 Recording and Reprocessing Data 

Signa 1 ouf put from the anemometer system was noriria I ly recorded on u . .  

frequency-modulafed magnetic tape recorder. A continuous recording t i m e  of 35 

minutes was used for each data run. Before a da ta  run a calibration run was recorded 

by oscillating the probe at  two frequencies (f = 1/7 and 7/14 cps) i n  the m e a n  flow 

field. The decaying turbulent fields were meusured a t  approximately 10 locations.  

along the channel, starting at  a few mesh lengths from the grid and  extending to a 

location where the energy of the ambient noise was approximately equal to 17 percent 

of the energy of turbulence,  The ambient noise of the channel and equipment without 

the turbulence-g'enerating grid was also recorded on the tape cifter each data  rune 

During da ta  recording, both the mean velocity ond root-mean-square of turbulence 

were continuously monitored by analog means to provide assimnce that the data  were 

valid throughout the long recording period 
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The recorded da ta  can be analyzed either by a n  analog or by a digital 

computer. Most analog data-processing techniques use a low-pass RC f i  Iter 

to  integrate the instantaneous quantities. Consequently, the resolution of the 

low-frequency result is not always too satisfactory. In analyzing data  of a 

weak turbuience, especia I ly i n  water, the  low-frequency domain i s  extremely important 

since the bulk of energy i s  contained within the 2-cps region. To obtain unbiased 

measurements a t  low frequencies, digital  computing techniques were chosen e 
-_-- I ..___ - 

Before the recorded analog data  could be analyzed by a digital computer 

the following reprocessing of data  was required: 

1 .  Transferral of the low-speed tope fo a high-speed tape to  meet 

I _ a .  r , I  _._- s - -  L- A:- :A. . . I  -ru,.-r+,r t I .  1 

-u - -  " ,,,u ,,,a,. drw-- --r"-..) -.  ...- 

2. Conversion of continuous analog data  into discrete digital 

samples of equispaced time interval.  

3, Removal of the long period trend and mean velocity U by rneans 

of a digital running-average technique. 

The high-speed c a p b i  lity of the analog-to-digital converter required a n  

increase i n  tape speed 32 times the original recording speed (4.78 cm/sec). This 

was done by speeding up the original tape recorded on an Ampex SP-300 by eight 

times and by transferring the da ta  to a tape on a n  Ampex SR-600 recorder a t  a 

tape speed of 19 cm/sec. The  transfer tape wtfs then digitized af a speed four times 

faster than its recording speed. 

To compute accurate  autocorrefatfon and energy spectrum functions within 



i 
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reasonable computer time, a careful trade-off study between the resolution of the 

results and the cost and capacity of the computer must  be made., According to 

Blackman and Tukeyl*, and Bendat and Piersol I a sample interval equal to 

one-fourth of the period of the highest frequency component observable i n  the 

record i s  sufficient for computing accurate autocorre lation and energy spectrum 

functions. From oscifloscope displays of the hot f i l m  output, the highest frequency 

compnent i n  the signal was about. 10 cps. Thus, a sample interval of At = 1/40 

second is used to digitize the analog data. It was found that the computed spectra 

contain almost no energy at  frequencies higher than 5 cps; hence, the digitized 

sample interval used would not C U L J S ~  significant a [lasing errar. 
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The mean velocity and its long period trend may be removed from the 
- 

original data, e'(t)l by a running  average, e;(+) 

e ( t )  = e ' ( + )  - e , ' ( t )  

where 

The effect of the running average o n  the recorded data can be seen as foOIows. The 

value of e'(t) can be represented by a Fourier transform 

and 
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The running average i n  terms of a Fourier transform can be obtained as  

c 

t + T  00 

G ’ ( f )  exp (i2Xf q )  d q  d t  1 

-00 

e x p ( i 2 v f t )  d t  sin 2n f  T 
“co 

st can be seen that the running average has a minin-ium high-frequency cutoff 

effect proportional to 1/2~rfT with band stops a t  f = n/2T, where n = 1,2 . . . It 

follows that  the Fourier transform of e(t) i s  of the form 

and the power spectrum cutoff factor due to the running average is 

For a low frequency of f = 1/8T, the power spectrum af ter  removal of  the running 

2 average, G(Q2, is equal to 0.005 G’(f) O n  the other hand, i f  f 2 15/T, then 

we have a cutoff factor of less than 1 percent,  A digital  5 -minu te  running average 

of 2T = 300 seconds was used to remove both the mean velocity and the tong period 

trend from the original da ta .  As can be seen from Eq. 2.7, a trend with a period longer 

than 20 minutes is almost completely removed, while for a frequency greater than 0.05 

cps the energy spectrum i s  practically not affected by the running average. The time- 

series sample of 72,000 data  points, representing the original analog da ta  minus its 

5-minute running average, was then  used as an input to an IBM-7090 high-speed 

computer for subsequent calculafions O F  the correlation functions. /a, short sample of 

turbulence and ccIibrcriion wave yeproduced from the digitized datu is shown i n  Fiy. 4.. 



16 

The ordinate of the figure is  in  arbitrary computer units, representing velocity, 

Superposed o n  the data  i s  the  sinusoidal calibration signal, through which the 

absolute values of both velocity and fime scale can be recovered. 



3.0 DECAY OF WEAK TURBULENCE IN T H E  FINAL PERIOD 

r: 

. 

The main objectives of this study was to find’liow the kinetic energy of weak 

turbulences decay with time and how ihe turbulence-generating mechanism affect 

the Final decay of such turbulences. It was found that in the final stage of decay 

the turbulence had equipartition of energy components and homogeneity in the cross- 

flow planes; see Section 2.2 and  Fig. 2. This condition simplified the measurements 

that were required to describe such a field. That is, only one measurement of the 

longitudinal componeni- of turbulence was sufficient for representing the field at. 

each cross-flow section. A 35-minute recording of the turbulence was made a t  

each different cross-flow plane, x distance from the grid. The data represent t-he 

turbulence at different decay times, i- = x/U, The recorded data after being digitized 

and having their 5-minute running average removed were used to calcufate u and 

various correlation functions. 

- 
z 

The energy of turbulence for each record is calculated as 

where eh is the digitized sample: 13, the calibration constant; and N, the total number 

of digitized samples, 

An estimate can be made on the normalized standard error due to limited record 

length, Tr, of the data, Assuming that the spectra of turbulence are approximately of 

white-noise type with band widt.h, vi/, one finds that the normalized standard error was 

given by Bendat and  iriersol l 9  as  

(3 “2) 
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The band width of the turbulence is a function of the mean flow velocity, U, and a 

wave number, Kw, representing the cutoff wave number 

u w =  1_1 

2 n  

.* 

where Kw for the present study (Fig. 10) is assumed to be Kw[ v (t-to)] lB= 0.50, 

Since the dissipation length of  turbirlence is x =C5vft-to)l 'I2 ; see  Section 5.0, 

then 

* "  

For a mean velocity,  U, the record length, Tr,  has to be increased with increasing 

. #.<,- . *  : c & ,  err - -  __,-..,"I^., c-.. -LL-.?-?-- LI.- I 1 1 
. .I - -  --.-.......I'I ...- I ~ . U ~ . - . I U W  r l l r l ~ ) ~  ut U I I I G l G j l l I  U c b L I V  L i ~ 1 1 1 1 1 1 >  

(t - to), is to be maintained. T h e  maximum value for (2i-r~ /1 12U) at the largest 

period of decay  measured is of the order of 6 seconds (Fig, 8). For the fixed record 

length, Tr, of 30 minutes used in this experiment, the largest possible error e i s  

about  5.7 percent; at shorter decay  periods near  the grid, the error is negligible. 

Thus, the record period Tr = 30 minutes i s  considered adequate  for the present 

investigation 

A small correction for the  ambient noise WGS found necessary for the weak 

In general I the measured da ta  turbulence measured near the end of the channel .  

ended when the ambient noise was more than '17 percent of the energy of turbulence. 

For every measured record of turbulence, the corresponding ambient noise of the same 

station was also recorded by removing the turbuic:nce-ger,erol.ing grid. The noise 
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level was found to be nearly constant along the whole test channel. The same 

was true for the correlation function and the energy spectrum of the noise. Dye 

traces initiated at  the upstream end of the channei were found to remain straight 

to the end of the channel. This indicated that there were no vortical velocity 

fields associated with the measured noise field; therefore, one may asswme that 

these noises were due mainly f-o minute longitudinal oscillations of the channel flow 

and recorder noises. One may also assume that the noise fields were uncorrelated 

with the turbulence under study and  could be subtracted from the measured datal4, , 

. __-- 

as 

-. - 
2 where um is the measured energy uncorrected for noise, and u: is the energy of 

ambient noise. 

In practice, the energy of turbulence was obtained as part of the computation 

for the autocorrelation function to be discussed i n  Section 4.0. The measured turbulence 

energies for different single grids were plotted i n  Fig. 5 as functions of the decay t i m e  

t o  The energy of turbulence created by the open Grid C approaches the inverse-square 

decay law at the very early stage of decay, while  the turbulence energies for the two 

solid Grids A and 5 approach the same decay law 

i n  Fig. 5 were replotted i n  linear scales as shown 

at a iater decay time. The data 

- 1/2 
i n  Fig. 6. It is clear that (U2/u2) 

varies linearly with t i n  the final period. This plot i s  used mainly to obtain the 

virtual origin of decay time, to 

toward the abscissa of t i m e  e 

by extending the straight part of the energy curve 
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Further tests were conducted to see whether different initial conditions of 

the turbulence-generating process would affect  the final decay law. This was 

.+ 
done by using different combinations of multiple grids. One experiment consisted 

of a large solid Grid A placed 30.5 c m  upstream of a small solid Grid B. The  

'energy of turbulence was plotted in Fig. 5 against the d e c a y  time, t ,  in reference .- . 

to the large Grid A. O n e  notes that the energy of turbulence generated by Grid A 

was significantly reduced by the small Grid B. However, the turbulence in the 

final period followed the same inverse-square law. With the positions of the two 

grids interchanged, it is seen in  Fig. 5 that there is no effect  of the small grid on 

the large o n e ,  The decay time in this case is again in reference to the large 

, p . - " - I  A A * . L I 0 I . - - * r I I  * 1 - 3  I I I  - . I C  - T i  

I -..- . .. , . ..... - .-... ..., - . I V Y  - "....XI V .  " , a # - . *  .U.-II,.YL.. 1 1 . 1 - 1 1  " W r r ' ,  VI,U.J w.  , I t "  

spacing between these grids was varied between 4,8 and 9,8 M, The decay  time 

is in reference to  the downstream grid. It was found that in this case the turbulence 

r o  

generated by the three grids was exact ly  the same as  that of one single grid.  A 

similar trend was also observed by Tsuj i  and !iama20 in their study of the initial 

period of turbuience decay  behind multiple grids. However, the present experiment 

indicated that for weak turbulence produced by grids, the energy of such fields does 

not consist of waves that are independent and  superposable but rather a field composed 

. 

a 

of a specific type of eddies,  

In the experimenfa! tests, i t  was found that multiple grids having nonintegral 

multiples of M/d ratios could cause a strong Moi& effect,  i o e e ,  large nonuniform 

drag effect ,  This results i n  large-scale eddies v h i c h  cauld inferuct with the mean 
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c 

flow field. For this case, the energy decay rate of turbulence was found to be 

less than the inverse-square law. 

Attempts to create turbwlence that woiild decay faster t h a n  the inverse- 

square law were not successful. All energy decay rates were either less than or 

equal to the inverse-square law. It should be noted that i n  order to obtain the 

observed inverse-square law, one has to achieve absolute uniformity i n  the mean 

flow field. If such a condition were not attained, the decay rate would always 

be less than the inverse-square. This may be the reason why such a decay rate 

is not commonly observed 

. 
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4.0 SELF-PRESERVATION OF CQRREMTION FUNCTIONS AND ENERGY 
SPECTRA IN THE FINAL PERlOD 

c 

A correlation function for a weak turbulence field was first obtained 

by Batchelor and Townsend13 in 9948. Since then no further work verifying 

the results has been known i n  the literature. This may be due largely to the 

fact that the technical difficulties involved i n  the measurement of weak turbulence 

were formidable. However, due to recent advances i n  both anemometry and data- 

processing techniques, studies of this nature are now possible. 

-_ - 

In the present experimental setup, Phe turbulence under study is decaying 

in the mean flow direction. The effect of this iongitudinial energy gradient is 

considered to have only minor effects on the basic decaying mechanism of the 

turbulence i n  its final period8' I*. Hence, the mean velocity field may be 

considered as a carrier of turbulence. In computing the correlation functions 

and energy spectra, one may approximate the turbulence as being locally homogeneous 

The digitized data for the fluctuating velocity component along the mean flow 

direction were used to compute the autocorre6ation functions, From this the 

longitudinal correlation coefficients can be obtained by using the Taylor's approximation . 
The one-dimensiona I energy spectra were computed directly from the Fourier 

transformation of the autocorrelation functions. Based an the assumption OF loca I 

homogeneity and isotrophy, one may further compute the three-dimensiona I energy 

and dissipation spectra from the one-dimensional spectra 

1 
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The recorded data for the turbulence generated by a single Grid C and 

Grid B were used for detailed digital analysis. The analyzed data were further 

limited to the final period of decay, 

was found to be plane homogeneous. 

The aufocorrelation function 

1 

T 3 w  
R ( T )  E l i m -  

since the turbulence within this period 

of u(t> i s  defined as 

u(t 4- T )  dt 

which may be written i n  a discrete forin for numericaJ computation 

N-m 
eh e h + m  R =  

N-m h-1 m 

where eh is the discrete digitized sample after the 5-minufe running average is 

removed from the origina I data; T = mAt i s  the correlation lag with sample interval 

At; N,  the samplesize; Q,Phe total discrete lag number; and 13, the calibration 
- 

constant. Note that R(0) = R,=o = u 2 . The nondirnensional time correlation is 

defined as 

In actual computation one has to choose a total lag, Q, which is more than'largc 

enough to cover the complete range of correlation funcfion. After the first trial 

computation the required Q or maximum T can be determined, so fhnt for subsequent 

calculation Q can be reduced to a minimum in order to save computer time. The 

(4.1) 

(4.23 

tofa! correlation lag used in  computing autokorrelations were Q = 200 or T = 5 seconds 

for Grid C, and Q = 400 or T = 10 seconds for Grid B. 
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An estimate for the normalized standard errors of  the computed correlation 

function and energy 

of turbulence are approximately of white-noise type wi th  band width, W, i o e e ,  

could be made i f  one assumes that the spectra 

(4.3) 

The approximate band width of turbulence for this case i s  ( i  e 12 U / ~ I T X ) ;  see Seciion 3.0, 

where U is the mean flow velocity,and x is the dissipation length. At the longest 

period of decay for the present experiments, the value for 1/W is &out 5 seconds; 

hence, for a record length, Tr , of 30 minutes, the largest standard error, eR, of the 

correlation function i s  

One notes that at large T where R(O)/R(I-) is not small the present measurements are not 

expected to be accurate. However, at  small T, the expected error i s  more,acceptubie . 
It should be noted that a tradeoff to make the present experiment more accurate must 

be made against computer time and capacity. In spite of the predicted large eRR' the 

computed data show better consistency. The results of the normalized time-correlation 

functions, R ~ ( T ) ,  a t  different stages of decay are shown i n  Figs. 7 ar;d 8 for Grids C 

and B, respectively. 

From the described resultsp 0ne may re-examine more closely the condition 

of homogeneity2' within the decaying field. For example, the gradfenis of length 

scales und energy i n  the mean flow direction must  be small 



25 

- 
<< 1 

b, Lx d x  15 u2 '12 - -(-$ - = -- 
dx A dx 2R, u 

(4.4) 

and 

: 

where R, is the  Reynolds number of turbulence; x , the Taylor's dissiption length 

._ _ _  . parameter; and  L,, the longitudinal integral length, These parameters are calculated 

and discussed i n  detail in Section 5,O. From the measured data we found that 

0.01 < - dLX < 0.025 
d% 

and 

< 0.1 ex du2 0.04 < - - - 2 dx 

Hence the fields may be considered to be locally homogeneous, and the Taylor's 

approximation' is applicable for the present experimental setup. It follows that 

the longitudinal correlation coefficient can be approximated by 

(4.6) 

where I' = UT. The longitudinal correlation distant, r ,  is further normalized by the 

diffusion length parameter as 

r* = rEv( t - to) l  - 1/2 
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In the f ina l  period of decay the longitudinal correlation coefficients for both 

Grid B and Grid C are found to have self-preserving form, as shown i n  Fig, 9. One 

should note that this function i s  close to a Cauchy's distribution function, and is 

definitely not of Gaussian type. Ii- was found that i n  order to obtain the correct 

dissipation and three-dimensional energy spectra from the correlation function one 

must first obtain a precise one-dimensional spectrum through the Fourier transformation 

of the longitudinal correlation coefficient . Since the spectra must cover an energy 

range of at  least 6 decades, see Fig., 10, it would be impractical to obtain such 

spectra through direct measurements. The best solution a t  this stage is to attempt 

to fit an ana lytical function over the measured self-preserving longitudina I-corre lation 

form was found to fit the correlation coefficient within experimental errors: 

U 

where a is the half width of the distribution function. The function with a = 3.2 

gives a perfect fit with the experimental data for r* < 10, see Fig. 9, For r* > 10 

the fit is not as good. Since the values at large r" will effect only the low frequency 

spectra, they w i l l  have a small effect on the dissipation and the three-dimensionul 

spectra; and hence inaccumxcy i n  this zone can be tolerated. 

As discussed i n  the following section 5-0, the important nondimensional radius 

of curvature, 

to the energy decay rafe of the system. The rGciius X" can be found directly from 

far the longitudinal correlation function at  r* = 0 i s  directly related 

Eq. 4.8as: 
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According to the K6rmh-Wowarth equixtion 5,7 for a turbulent fieid whose energy 

* decays as (t-to)-* the value for A* should be equal to fi or 2,24. Thus the 

, .  propr; value for a i n  Eq. 4.9 should be equal to 3,16 instead of 3 . 2  according to the 

best fitted curve. This coefficient will be shown later to have a strong influence on 

the dissipation rate of turbulence. It was also found that the nondimensional correlation 

functions have only a small change i n  functional form between the intermediate and 

the final stages of decay. 

From the analytical expression of . .  . 

I .  . , I  - .I. - - - - ' - - ^ . I  r r r h r i r r , -  . - I  - . a t  * . I N . W . . .  ...- *..- -. 

the longitudinal correlation function one 

i .. *hrni tmy~ rnmir rnlil I ~ I  I I I S I I ~ I U I I I I  I G Z U ~  I V I I J .  

- 
E,(K) = - 2 u 2  1," f(r)cosKrdr 

77 
(4. IO) 

Here the power spectrum is defined i n  the positive wave number space so that 

(4.11) 

-id;ere A is a function of the geometry and the Reynolds number of the grid. Equations 

4.10 and 4.11 con be nondimensionalized as foliows: 

03 

1 A 
(4.32) 

where K* = K Ev(t-  to) 7'/2 
Substituting Eq. 4..8 into Eq. 4.12, one obtains the nondirnensianal ~ne-ditillensior?aI 

spectrum 
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-r- 

. '. . 

- a K  * 
cosK*r* dr* = a e  

1 co 2 
E i  = J, 

This spectrumplso known as  the Laplace's distribution function, is plotted in Fig. 10 

for a equal t o  3,16. It will be shown later that the decay  rate of turbulence is 

(4.13) 

dictated primarily by the smalf variation a t  the vanishing end of the energy spectra; 

and hence, the most important parameter governing this ra te  i s  the Taylor's diisipatior: 

--- . . ...-.length x . Henceforth we shall take a = 3.16 as  being the asymptotic value.  

T h e  nondimensiona I three-dimensional energy spectrum E* can be obtained 

from the following 

fieid is homogeneam and isotropic, 

of the one-dinensional spectrum, i f  the turbulent 

- - -- K"3 d [ 1 ye] dE; = -T €3. CK*+ aK"*I E; (4.14) 3 dK* K aK 

where E i s  the  three-dimensional energy spectrum. It has been shown previously that 

the present weak turbulence is approximately homogeneous and isotropic, except  the 

third-srder correlation functions (see Section 6.0, Fig. 14) d o  not fully satisfy the 

condition of focal isotropy. Nevertheless, it is assumed that Eq. 4.. 24 is valid with 

reservation. The se If-preserving three-dimensional energy spectrum for the weak 

turbulence i s  shown i n  Fig, 11 

a value of less than 0.0'1 a t  K* = 3, while the  one-dimensional spectrum vanishes at 

abouf K* = 1.8, see Fig. 10. It is  clear that in order to obtain the correct three- 

O n e  notes that  i t  peaks a t  almut K* = 0.5 and vanishes to 

dimensional specfrum extreme accuracy is required in the one-dimensional spectrum. 

Note also that E" i s  propartioaal to K". CIS K*  -+ 0, 
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From the three-dimensional energy spectrum one  can obtain the dissipation 

spectrum D=2vK 2 E, which can be expressed in the nondimensional form a s  

h 

This function is shown in Fig, 12 for the case in which a =  3.16. The dissipation 

spectrum peaks a t  K* = 1.2 and  vanishes a t  K" = 4.0, 

With these results one may proceed to examine the balance and transfer of 

energy among all of the  wave number components. The time rate of change cf 

energy" for a given wave can be expressed a s  

1 (K( , t>  - 2vK2E 
aE - -  
43- -I 

(4,15) 

(416 )  
- .  

and the integrated rate of change of energy over  all waves i s  

where E(K,t) is related to the triple correlation function representing the transfer of 

energy among the various waves. One notes that for the present case 

J O  

since no energy i s  generated or  lost while the energy of waves a re  redistributed. Both 

Eqs. 4.16 and 4.17 can be nondimensionaIr'med QS 

(4. J8) 

(4.19) 
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and 

co cg I ($)*dK* = i o D * d K *  = - 2  
0 

Since 3 . k  K* dE* --E + -- (F)* = 2 2 df<* 
aE 

(4.20) 

The energy transfer function i s  plotted i n  Fig, 12 for the case a = 3,16. I f .  is evident 

that the energy transfer function has a self-preserving and nonvanishing form, with 

continuous transfer of  energy from low to high K * -  

correlated throughout the f inal  stage ot  decay; and they must b4 reroeea to some 

In other words, the waves are 

specific types o f  physical vortices. 

The integral of  the dissipation spectra can be evaluated as 

- 
-2 The integral mcst equal -2, see Eq. 4,20, for the  case i n  which U* = A(t- to)  e 

(4.22) 

Hence, a must equal to m= 3.16 as is required by the Kbrman-Howarth equation 5.2 

mentioned before. . 
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5.0 LENGTH PARAMETERS AND REYNOLDS NUMBER OF TURBULENCE 

5‘ 

r‘ ” 

It i s  of general interest to find out how the various length parameters such 

as the Taylor’s dissipation length parameter, x , and the longitudinal integral 

length , L,, and the Reynolds number of turbuleiice IRA , vary with $lie decay  

t i m e .  

The turbulence Reynolds number i s  defined as  

- f/2 
where (u2) is the characteristic velocity; , the dissipation length parameter 

The  dissipation length parameter, 

equation3 at correlation distance equal to zero as 

, i s  defined by the Ka”rma”n-Howarth 

-2 d u2 1 o v v  
- 

2 
I _ - -  

x d t  - 

If the decay  of the kinetic energy of turbulence follows a simple power law of the 

form u2 00 (t-t0)-*, the dissipation length parameter may be written as 
I 

C 

since to << t in  the final period, this approximation i s  a valid one to use, The 

parameter x may also be evaluated, as mentioned before, from the  radius of the 

longitudinal corrclafion coefficient f(r) necr the origin , i .e, , 

(5 4 2) 

(5.3) 
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- f " ( r = O )  = I/ 12 (5.4) 

The numerical evaluation of x from f"(0) was made by the least-square fitting of p w e r  

series of I- through f(r) near the origin and solving for the radius of curvature ut  

r = 0. It was found that x evaluated by this method was quite close to the KGrmGn- 

Howarth approximation of 

can only be obtained from the radius of curvature of f(r) a t  r = 0. 

in the final period of decay.  Before the final period, x 

The longitudinal integral length, Lx, may be computed from the following 

definition: 

It was found numericafly that  Lx 2~ . 
The Reynolds number of turbulence in the f ina l  period may be estimated by 

while W, before the f ina l  period is computed directly from 

- 
1 2 

= v [ f:(o) Y2 (5 -6)  

The measured I, and x are presented in Fig. 13. lt is interesting to note that for the 

case of open Grid C, the Reynolds numbers of turbulence a re  under 30, and the decay 

of energy follows the inverse-square law a t  a very early stage. However, for the two solid 

Grids, A and 5, the inii-ial Reynolds numbers of turbulencc are more than 58. As R A  

decreased to appnximute!y 30, $he decuy of energy was found to approach the Enverse- 
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square law, and foliowed the law throughout the last period. In the present experimental 

setup, the onset of the inverse-square .law i s  approximately I, 5 30. 
i 

.' 
I 

c 
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6.0 THIRD AND FOURTH-ORDER CORRELATION FUNCTIONS 

*** 
The correlation functions of the third and the fourth orders are the additional 

statistical characteristics of the turbulent field which are of direct interest to the 

statistical theory of turbulence 

The time-correlation  coefficient^^^ of higher order are defined as 

’I 

i f  the  joint-probabi lity density distribution of velocities i s  assumed to be Gaussian, 

then the correlation coefficients of higher order that are even are given by a function 

of ihe second-order come lation coefficients 23 R~(T), and  the carrelation coefficients 

of odd order are all zero. This may be subjected to experimental verification. 

The measured correlation coefficients of the third and fourth orders at  various 

stages of decay were compared with results of Frenkiel and K l e b a n ~ f f ~ ~  i n  Fig. 14. 

The data used for computing the correlation coefficients of the third and fourth orders 

are based on those of the small open Grid C with measurements taken a t  positions - 
x/M = 4.8 and 19.2. As shown i n  Fig. 14, the measured correlation coefficients 

of the third order are very similar to those of Frenkiel and Klebanoff 

of isotropic turbulence, R;~’(T) should be equal to -R;”(T)! and third order moment 

coefficient, u2(t)/ [u2(t)  1 , should be equal to zero. The present results for weak 

. In the case 

3/2 
- - 

turbulence and the results of Frenlciel and Klebanoff a t  higher Reynolds numbers 

emphasize that turbulence produced by grids i s  not exactly isotropic, since 
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Rf"(0) = R,"2(0) f 0 

The fact that the third-order moment coefficient is not zero also implies that the 

waves are not completely independent. 

If the time skewness23 is written as 

it is  noted that the maximum time skewness at  two different stages of decay (Fig. 14) 

e 
I< l l ~ l K l I ~ ~ X I I I I C J I t = I V  UI L A 

If the Gaussian probability density distribution of turbulence velocities is 

assumed, the fourth-order correlations can be represented by the second-order 

correlation", i . e o ,  

and 

*. . 
The experirnenta I ly measured fourth-order corre eations are compared with the 

1 P 3  corresponding Gaussian values calculated by using Eqs. 6,3 and 0.4 for R, , 
R:' I ,  and R t 2 f 2  from the measured second-order correlation coefficients, R,, i n  

Fig. 7, As shown i n  Fig, 75, the measured fourt1-I-order correlation coefficients 

depart from 4-19 predicted curves a t  regions of small  lag. 



36 

7.0 COMPARlSON WiTH STATISTICAL THEORY OF TURBULENCE 

O n  the basis of the theoretical result of Diessler (f ig. 3 of Ref. 8) and 

12 also of Lee and Tan 

grid-produced weak turbulence OR the spectrum iensor a r e  negligible. Thus, 

the statistical theory 6 1  

used to compare against the measured da ta .  Before making such comparisons, w 

brief review of the statistical theory of turbulence is desirable. The  Navier- 

Stokes equations for the weak homogeneous turbulence field a r e  in the form of 

, the  effects of longitudinal inhomogeneity of the present 

1 3 f  24 for the weak homogeneous turbulence can be 

where ui and p a r e  the fluctuating velocity components and pressure, respectiveiy, 

and the constants p and v are mass density and kinematic viscosity of the fluid, 

respectively. If we multiply Eq. 7.1 by u -  and add to the product a similar equation 

with i and j interchanged, the resultant two-point correlation equation i s  

1 

where 

r . 
8 R.. ( r ,  t )  = u & x r  t )  uj(xi-r, t )  '1 
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. 
Vir 

. . 

and 

One may take Fourier transformation of Eq. 7.2 by defining 

J d -co 

Then one obtains the spectrum tensor equation from Eq. 7.2 

- @ g ( K , t )  a = T.-(K,t ) - 2vK2.3;j(K,t) 
at ‘J 

It is  clear that the two-point correlation and spectrum tensor equations are 

indeterminate since the terms Si*(r#t) and T.-(K, t) are completely unspecified. 

Equations for S i * (  r,t) can be obtained; however, these involve the fourth-crder 

correlations, and so on. 

3 1 1  

1 

In the final period of decay, Sij(r,t) and Z*.(K, t) are assumed negligible; 
‘1 

then we have 

a 2 -R..(r,t) = 2 v v  R*-(r,t) at IJ ‘J 

and 

Equation 7.5pssesses a solution of the fdrrn 

(7.3) 

(7.4) 

(74 5) 
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1. 

The equations of  motion do not supply the in i t ia l  spectrum tensor, @ij(K,to) 

although they must obey continuity and the condition o f  symmetry, i .e., 

, 

c 
C 

. . 

and 

As (t-to) +co , the exponential factor w i l l  be small except for small values o f  K, 

then one can replace @**(K,to) by the faylovkexpansion of  @i*(K, to)  about K = 0. '1 1 
This expansion satisfies Eqs.7.7and7.8and i s  defined as a class of  admissible init ial  

i s  given by 

a 
a,E(K,t) = - 2 vK2E(K,+) 

and 

-2 v K*( t - to 1 E (K,t) = E(K,to) e 

Equations7.5and 7.9indicate that the energy components coming from different wave 

numbers are statistically independent. By the Taylor's expansion of  ini t ial  spectrum, 

E(k,to), a b u t  K = 0, one can find Q class o f  admissible solutions for E(K,t) that is 

consistent with the Navier-Stoke equation (Eq. 7.11, continuity (Eq. 7.7), and the 

condition o f  symmetry for the spectrum tensor (Eq. 7.8). The admissible sofutions of  

(7.91 

(7.10) 
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. 

the spectrum 1 1 f 1 2  for the homogeneous and isotropic weak turbulence are i n  the 

form of 

2 - 2 v K  ( t - t o )  
E,(K,t) = JsKSe 

for s = 2,3 ,4 o . .  , where Js i s  a constant. This leads to a total decay of energy i n  

the final period of the following form: 

It is apparent that considerable variety in the ultimate decay of turbulence can be 

obtained by choosing different admissible inikial spectra. 

P . I  I - 1  I -  - I * z -  - -1. L L I  rmnn+. , , -  ~ C . n  fin .-  - r  

I l l G  >GII-pIGabl v i t i y l  t v i i i i  IVI a s s -  --l...--.-.- 

obtained by rewriting Eq. 7-11, ioe . ,  

(7. I ? )  

(7.12) 

The dimensionless plots of E, v -'I*(+- t 0 f2  versus 

solutions possess a self-preserving "bell shape" with E2 v t -  to ), E3 v ( t -  to) 

and E4 c1/*(t-t0)* peaking at K* equal to 1.00, 0.866, and 0.707, 

respective i y . 

K * for all the admissible 

- 1/2( - 1/2 3/2 

The longitudinal correlation functions correspond\ ng to the admissible solutions 

1 1  given by Birkoff are 
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. 

I 

2 2 -5/2 4 -2vK ( t-to), and u a3 ( t - t o )  
corresponding to E4(K,t) I J4K e I 

_. 

3 - 2 v K 2 ( t - t 0 )  2 -2 
corresponding to E3(K,t) = JgK e , and u ~ ( t - t , )  ; 

(7.16) 

- 
2 -2vK 2 ( t - t o )  ' 2 - 3/2 corresponding to E2 = J2K , and u m ( t - t o )  

Here we have normalized r by :he dissipation length 

which is the curvature of the longitudinal correlation function, fs(r)J near the origin 

of r = 0. 

s r20u(t-to)/(s +1) J 

As shown i n  Fig. 5, the kinetic energy of turbulence decays as the inverse- 

square of time for ail cases tested. Although the inverse-square decay law is one of 

the admissible solutions of the normal statistic of weak turbulence, the measured 

longitudinal correlation coefficients and the energy spectrum should also be i n  

agreement with those corresponding to the inverse-square decay law predicted by the existing 

theory. For large correlation distanced the longitudina f correlation coefficient, 

correspwding to the tnverse-square decay law, should be slightly larger than the curve, 
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f , correspnding to the -5/2 power law, and slightly less than f2 corresponding 4 

to the -3/2 power law. As shown in Fig. 9, the present measured longitudinal 

correlation coefficient, f(r), is not only larger than f3 but also larger than  f2 as 9- 

predicted by the existing theory. Also the three-dimensiona I energy spectrum 
*e 

. -  
predicted e Consequently, the energy 

I stage of decay but plays an important role 

i n  the mechanics of decay. 

- 

In general, the experimental results are not i n  ful l  agreement with the 

results of existing theories for weak turbulence. The statistical theory of turbulence 

according to Birkhoff' is characterized by 

2. Components coming from different wave number 

statisticaily ind%pendent (Eqs. 7.5 and 7,9). 

vectors being 

Under normal statistics all odd-order correlations should vanish and the fourth-order 

moment coefficient should be equal to 3. It was found that the measured third and 

fo*&-order correlation func8lons were not consistent with Statement 1 . As shown 

i n  Fig. 1 4 a n d  15, the third:order moment coefficient, u 3 (t)/[u (t)] 3/2 I is between 

$,> *' + - - 
- I 
4 2 0.06 and 0.1, and the fourth-order moment coefficient, u (t)/[u (t)] , is not quite 

equal to 3. The assumption of a Gaussian joint-probability distribution of velocities 

is also not quite valid. Furthermore, since the measured energy transfer function (Fig. 12) 

and consequently the second-order correlation function (Fig. 9) are not i n  agreement 

with those assumed by ihe existing theories, 'Statement 2 i s  not consistent with the 

present measurements e 
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8.0 COMPARISON WITH KINETIC MODEL 

Visual observation of the perturbation of capillary dye traces in all 

grid-produced weak turbulence showed a distinctive turbulent field structure 

consisting of noninteracting, randomly orientated,  aged  vortices identical to 

those reported by T a n  and Lingld0 No detectable  change i n  the basic structure 

of turbulence was observed even down to the very last stage of decay, which was 

no longer measurable by the instruments. For a l l  cases tested, the energy of  

turbulence decayed precisely a s  (t-to)-2 i n  the final period (Fig. 5), which was 

consistent with the kinetic model. Thus, i t  is interesting to discuss the kinetic 

model in relationship to the present experimental data  

The turbulence field in the final period of decay may be considered as  a 

field consisting of essentially noninteracting, aged line vortices with limited 

distribution in energy and s ize .  In the absence of a mean shear field, the 

probability disfribution of the  vortices in space should be uniform and the orientation 

of the vortices should be completely random. The m a i n  feature of such a field is dom- 

inated by the physical l ine  eddies, whose energy decay rate i s  independent of size, 

The velocity field of a l i n e  vortex of finite energy is best described by the Rouse-Hsu 25 
. 

model, i.e., 

It i s  i rnpr tan t  to note that the velocity field i s  Q solhtfior~ of the Navier-Stokes equation, 

where r in Eq. 8.7 i s  the distance from the vortex center ,  The consianfs H ,  a ,  and (r 
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." 

. 

are related to the init ial  f ield c h a r a c t e r i ~ t i s s ~ ~  ro, ro , and Co as 

= H( u -  l)/.rraa 

where r i s  the in i t ia l  radius of  maximum circulation To; ro the in i t ia l  

r0 

0 

centerline vorticity; a = 4vtd; tdf the init ial  decay t ime (ahead o f t  = 0); 

(z = 1 4- t td; and t is the time of  vortex generation. - _-  . _-_ - . . - d  g 

The kinet-ic energy per unit length of vortex is 

co 
K.E. = n p  [ V 2 r d r  

" 0  
2,2 4 7 1  1,- 

v 
! 2 

r . 1  I - v . , - 
8.rr ' I '  ' ' (a a + 4 vt )(a -i- 4 ut) ' 

In the final period of decay, td + t >> tg; thus, the asymptotic expansion o f  the 

energy decay becomes 

Tan and Ling14 have shown that the statistical average o f  the turbulence kinetic 

energy in  plane (t> decays with (t + td)-*, accord mg to the same decay law as 

an individual eddy, providad the latter does not depend on the eddy scale. it i s  clear 

that this decay law is not affected by the inherent ini t ial  conditions. 

The typical length scales of  the single vortex are the core sizes of the maximum 

velocity and the naximurn circulation at any t ime in the final period. Let E and 9 be 

the radi i  of the maximum velocity and the maximum circulation of  the vortex, respectively, 
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Then a t  r = 5 , aV/ar = 0, and a t  r = q , arV/ a r  = 0. Thus 

2 
a ( o -  1 ) ~  2 

(vu+ 4vt ) (a -1-  4v t )  
2 5  ( G -  1)a 

1 = In { I +  _I 
- 

( oai- 4. v t )( a +4 vt )  -I- 2 E2 (a +4 v t  ) 

and 

3 - ( o - 1 ) a  - In { 1 +  -- 
2 

a b  - -%-l 
(oa+ 4 v t ) (  a+ 4vt )  a +  4 v t  

Again assume that fd + t >> t i n  the final period, then the asymptotic expansion 

of E and ’1 are  

9 

r l =  P [ v ( t - t d ) l ’ ’ 2  = 0 . 8 9 ~  (8 5) 

It i s  important to note that  the Taylor’s dissipation length is of the order of E . If 

the weak turbulent eddies generated by a grid are considered as noninteracting, 

randomly orientated,  aged vortex elements, the typical length scale of the weak 

turbulent eddies is alwuys proportional to the length scale of the single vortex. The 

length scales of a single vortex i n  the f i n a l  period i s  5 - 7 - Ev(t-  tO)J’/2r where fd 

is taken to be of the order of  to. i f  the spectral function i n  the final period possesses 

a self-preserving form, i t  may be written as 
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a 

b9 where € 1  i s  the longitudinal one-dimensional energy spectrum and I+~{K } is a 

similarity function. The total energy is 

Thus 

- 3/2 - c ?I2( t - t,)-312 (8 .7)  
A v  2 [ v ( t - t o ) l  

F{v,(t-t,)) = - -  
J; GW*IdK* 

where K" = K C v(t-to) I 'I2, and C is a constant. The measured self-preserving 

form of the one-dimensional energy spectra shown i n  Fig. 10, confirms the 

~ C F M T ~ I ~ - I ~ ) Y .  + ~ r m r + i n n  +nr TOP c n p r r r n l  ~ r ~ r r x v  - 

The correlation and spectral functions based on the kinetic model have not 

yet been developed. However, since the measured spectral and correlation functions 

are difrerent from those based on the normal statistics, it wovid imply that the 

statistical structure of a weak turbulence field has a limited degrees of freedom. That 

i s ,  the field has some preferred structures in  the form of aged physical Iine-eddies. 

In general, the correlation function i s  directly related io the eddy structure, i.e*, 

the velocity fields a t  two points wifhin an eddy ere correlated, while those without 

an eddy are uncorrelated. Since the physical eddies Ore not spherical in structure, 

they would contribute to a correlation function having broader shape, and a three- 

dimensional spectral -function peaking at lower wave numbers, similar to those observed 

experimentally. In addition, the wave cornponenfs from stich CI field are expected to 

be correlated in  p a r i  cis indicated by the exp'erfmental results. 



46 

9.0 CONCLUSIONS 

. 

By comparing the experimental results with the existing statistical theories 

and the kinetic model of a weak turbulent field, o n e  may draw the following 

concl usians: 

1 .  The kinetic energy of weak turbulence generated by single-biplane 

and multiple-sfage grids was found to  decay in the final period 

precisely as the inverse-square of the decay t i m e .  The energy of 

the weak turbulence produced by mc;/tiple stages of grids does not 

follow the simple superposition principle. This implies that the  

.._^_ - _._ - 

~ 3 - r - A -  .- - --:- -1. ..._. .-_ L,.L F:,,IJ I .  1 I 

V V G U A  I U l U u L ~ l l ~ r  ,.A I , " .  Yu*,'p""-~ -. ...-- -..--... . - .  - _  - 

that  has a definite preferred structure which contrsJs the mechanics 

of decay.  

Although the inverse-square decay law is o n e  of the admissible solutions 

of the statistical theory of weak turbulence, both the measured second- 

order correlation and the energy transfer functions are not consistent 

with those assumed under norma I statistics 

also that the wave components coming from a field of definite structure 

a r e  not completely random with unlimited degrees of freedom. Experimental 

results indicated continuous transfer sf energy from low to high wave 

numbers throughout the final stage of decay.  

2. 

This inconsistency implies 
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- 
2 3/2 . - 

3, The measured third-order moment coefficient, u3(t)/r u (t)] 

approximately equa I to 0.1; the measured fourth-order moment 

, IS 

- - 
coefficientr u4(t)/C u2(t)l 

tion of a Guassian joint-probability distribution of velocities i s  also 

not quite valid with regard to the third cnd fourth-order correlations 

especially at  small lags. These results are contradictory to the assump- 

tion that quantities linearly related to the velocity field are normally 

distributed e 

When the Reynolds number of turbulence was less than 30, the energy 

of turbulence was found to decay as the inverse-square of time. 

I is not quite equal to 3; and the assump- 

4. 

in 

th i z  5nnl nr..rj;?rj nf c4ec.n~ - n!! ti::hiilenrP l ~ i i r t ~ h  vclfi; wt=rP 6n;rlint-l +n 

increase as the square root of decay time, while the Reynolds number 

of turbulence was found to decrease with the inverse-square root of 

time. The measured longitudinal correlation coefficients are close to 

the Cauchy's distributions, and  they possess a self-preservative form with res- 

pect to r [ ~ ( i - - t ~ ) ]  . Both the measured Taylor's dissipation length and 

the integral of dissipation spectrum correspond we1 I with the observed 

decay rate of turbulence I 

Through visual observation of the perturbations of capillary dye streaks, 

the turbulent field in  the final period of decay was found to be also 

characterized by aged and essentially noninteracting line vortices, No 

further change i n  the basic structure of turbutence was observed down 

to the iast perceptib!e perturbation of the dye  streaks. Thus, a l l  

experimenta I evidence i ndS cafed that a week homogeneous turbulence 

has a definite preferred structure e 

-1/2 

5. 
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Fig. 3 Typical Calibration Curves for H o t - F i I m  Probe 
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Fig. 5 Energy Decay o f  Weak Ttlrbulrnce 
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Fig. 10 Dimer-isicnless One-Dimens iona l  Energy Spectrum of Weak Turbulence 
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Fig 13 Reynolds Number of Turbulence and Dissipation Length Parameter 
as Functions of Decay T h e .  
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of Gaussian Probability Density Distribution of Tiirbvleni- V~:Ioc;if.y 


